- Groups
- Rings (basic)
- Modules
- Fields (basic, field Criencion)
Groups
Def A set G with a binary operation o is called
Bronb it
1) zoyeg if z,yeg
2) Xo(yoz) = (Xoy) oz for any X, X, Z E G
3) Jeff s.t xoe=eox=x for all x fg
4) XEG ⇒ ∃x ⁻¹ EG s.t xºx ⁻¹ = z ⁻¹ •x = e
· e is called the identity element of G
x ⁻¹ is called the inverse of x
exercise show that the identity element is unique
show that for each <i>X</i> , the inverse of <i>X</i> is unight
$\underline{e.g}(\mathbb{R},+)(\mathbb{Z},+)(\mathbb{R}\setminus\{o\},\cdot)$

(general linear group) GLn (IR) = { invertible nxn real
matrices 3
(symmetric group) Sn = [6: [1,,n] -> {1,,n] :
6 is bijective s
(dihedral group) $D_n = \{1, x, x^2,, x^{n-1}, y\}; x^n = (xy)^2 = (xy)^2 = 1\}$
$= \langle z, y x^{n} = y^{2} = (xy)^{2} = 1 \rangle$
= Set of reflections and rotations
of the regular n-gon.
Def (Subgroup) Let (G,.) be a group and HSG.
If (H, o) is a group, then we call H a subgroup

of G and denote by $H \leq G$.

Def (Abelian group) A commutative group (G,o) (i.e. 20y = yox for all x, y E G) is called an abelian group.

C.g (C,+) is an abelian group and $Z \leq Q \leq |R \leq C$ $Z_n := \{1, z, z^2, ..., z^{n-1} \}$ $Z_n \leq D_n$

Def (cyclic group) A cyclic group is a group

gonerated	by a single element, i.e. (G.o) is
Cyclic i	
	G: ζェ) = {ェ^ ∩ ∈ Z }
for som	e xeG.
Def (ord	er) The order of a group G is the
Cardina	lity of G and denoted by IGI
If xe	G, the order of x is the order <x> and</x>
denoted	by 121
Prop (Sub	sroup test) $H \subseteq (G, \circ)$. H is a subgroup if
1) C (2H
2) XY	'EH for xigEH
Prop If	G is a Cyclic group, then all subgroups of
	Cyclic,
	in, the order of <zmy gcd(m,n)<="" is="" n="" td=""></zmy>
Thm (Lagr	onge) Let G be the finite group order
	zeG order m. Then m/n

Thm (Sylow) Let G be the finite group order N=p^km where p is prime and p/m. Then there exists a subgroup HEG of order pi for 1 < i < k.

Def (homo/iso morphism) Let (G, o), (H, *) be groups. Ø: G -> H is a homomorphism if A homomorphism of is called an isomorphism if ø is bijective

exercise 9	5: G-7H	homomorphism.	Show	that
$) \phi(e_{G})$	< CH			
2) x =	Ø(Z)			
3) Ø(x-1) =	· Ø (x) -			
4) 1Ø(G)	іні / І	Ø(G) G		
5) G' < G =	» ø(G') <	н		
c) Ker ø E	G			

Goal: Classify group up to isomorphism

The Suppose G is an abelian group of finite order.
G = Z K + ··· × Z h
isomorphic J
Pi,, Pn (not necessarily distinct) prime numbers
eig xeg, yeh izi=m iyi=n
$(x,y) \in G \times H (x,y) = lcm(x,y)$
$Z_n \times Z_m = Z_{mn}$ if $gcd(m,n) = 1$,
e.g. How many abolian groups have order 12?
12: 2.2.3
$z 2^2 \cdot 3$
$G \cong \mathcal{U}_2 \times \mathcal{U}_2 \times \mathcal{U}_3 \text{or} \mathcal{U}_2^2 \times \mathcal{U}_3$
$(\tilde{z}_{2}\times\tilde{z}_{6}) (\tilde{z}_{12})$
Rings
Def Aring (R, +, ·) is a set w/ two binary
operations such that

1) (R.+) is an abelian group w/ id O, and
inverse -x for x
2) (R,.) is associative
3) $\chi \cdot (y + z) = \chi y + \chi z$ ($z + y$) $\cdot z = \chi z + y z$
If (R,.) has multiplicative identity, it is
denoted by 1 GR and R is called a ring
wl unity.
If (R) is commutative, R is called a compatize
ring
Def Let (R,+,-) be a ring w/ unity 1. Then
on element XEG w/ x ⁻¹ GG Sut. Z.z ⁻¹ = x ⁻¹ ·x=1
is called a unit of R
An element x E G w/ non-zero y E G s.t.
2y=0 or yz=0 is called zero-divisor
Def A commutative ring w/ unity and no zero
divisors is called an integral domain.
Def A field (F, t) is a ring s.t (R\ [o], .)
is an abelian group.